Source code for escnn.nn.modules.batchnormalization.gnorm


from collections import defaultdict


from escnn.gspaces import *
from escnn.nn import FieldType
from escnn.nn import GeometricTensor

from ..equivariant_module import EquivariantModule

import torch
from torch.nn import Parameter
from typing import List, Tuple, Any, Union
import numpy as np

__all__ = ["GNormBatchNorm"]


[docs]class GNormBatchNorm(EquivariantModule): def __init__(self, in_type: FieldType, eps: float = 1e-05, momentum: float = 0.1, affine: bool = True, track_running_stats: bool = True, ): r""" Batch normalization for generic representations. This batch normalization assumes that the covariance matrix of a subset of channels in `in_type` transforming under an irreducible representation is a scalar multiple of the identity. Moreover, the mean is only computed over the trivial irreps occurring in the input representations. These assumptions are necessary and sufficient conditions for the equivariance in expectation of this module, see Chapter 4.2 at `https://gabri95.github.io/Thesis/thesis.pdf <https://gabri95.github.io/Thesis/thesis.pdf>`_ . Similarly, if ``affine = True``, a single scale is learnt per input irrep and the bias is applied only to the trivial irreps. Note that the representations in the input field type do not need to be already decomposed into direct sums of irreps since this module can deal with changes of basis. .. warning:: However, because the irreps in the input representations rarely appear in a contiguous way, this module might internally use advanced indexing, leading to some computational overhead. Modules like :class:`~escnn.nn.IIDBatchNorm2d` or :class:`~escnn.nn.IIDBatchNorm3d`, instead, share the same variance with all channels within the same field (and, therefore, over multiple irreps). This can be more efficient if the input field type contains multiple copies of a larger, reducible representation. Args: in_type (FieldType): the input field type eps (float, optional): a value added to the denominator for numerical stability. Default: ``1e-5`` momentum (float, optional): the value used for the ``running_mean`` and ``running_var`` computation. Can be set to ``None`` for cumulative moving average (i.e. simple average). Default: ``0.1`` affine (bool, optional): if ``True``, this module has learnable affine parameters. Default: ``True`` track_running_stats (bool, optional): when set to ``True``, the module tracks the running mean and variance; when set to ``False``, it does not track such statistics but uses batch statistics in both training and eval modes. Default: ``True`` """ assert isinstance(in_type.gspace, GSpace) super(GNormBatchNorm, self).__init__() self.space = in_type.gspace self.in_type = in_type self.out_type = in_type self.affine = affine self.track_running_stats = track_running_stats self._nfields = None # group fields by their type and # - check if fields of the same type are contiguous # - retrieve the indices of the fields # number of fields of each type self._nfields = defaultdict(int) # indices of the channels corresponding to fields belonging to each group _indices = defaultdict(lambda: []) # whether each group of fields is contiguous or not self._contiguous = {} ntrivials = 0 position = 0 last_field = None for i, r in enumerate(self.in_type.representations): for irr in r.irreps: if self.in_type.fibergroup._irreps[irr].is_trivial(): ntrivials += 1 if r.name != last_field: if not r.name in self._contiguous: self._contiguous[r.name] = True else: self._contiguous[r.name] = False last_field = r.name _indices[r.name] += list(range(position, position + r.size)) self._nfields[r.name] += 1 position += r.size for name, contiguous in self._contiguous.items(): if contiguous: # for contiguous fields, only the first and last indices are kept _indices[name] = [min(_indices[name]), max(_indices[name])+1] setattr(self, f"{self._escape_name(name)}_indices", _indices[name]) else: # otherwise, transform the list of indices into a tensor _indices[name] = torch.LongTensor(_indices[name]) # register the indices tensors as parameters of this module self.register_buffer(f"{self._escape_name(name)}_indices", _indices[name]) # store the size of each field type self._sizes = [] # store for each field type the indices of the trivial irreps in it self._trivial_idxs = {} # store for each field type the sizes and the indices of all its irreps, grouped by their size self._irreps_sizes = {} for r in self.in_type._unique_representations: p = 0 irreps = defaultdict(lambda: []) trivials = [] aggregator = torch.zeros(r.size, len(r.irreps)) for i, irr in enumerate(r.irreps): irr = self.in_type.fibergroup._irreps[irr] if irr.is_trivial(): trivials.append(p) aggregator[p:p+irr.size, i] = 1. / irr.size irreps[irr.size] += list(range(p, p+irr.size)) p += irr.size propagator = (aggregator > 0).clone().to(dtype=torch.float) name = r.name self._trivial_idxs[name] = torch.tensor(trivials, dtype=torch.long) self._irreps_sizes[name] = [(s, idxs) for s, idxs in irreps.items()] self._sizes.append((name, r.size)) if not np.allclose(r.change_of_basis, np.eye(r.size)): self.register_buffer(f'{self._escape_name(name)}_change_of_basis', torch.tensor(r.change_of_basis, dtype=torch.float)) self.register_buffer(f'{self._escape_name(name)}_change_of_basis_inv', torch.tensor(r.change_of_basis_inv, dtype=torch.float)) self.register_buffer(f'vars_aggregator_{self._escape_name(name)}', aggregator) self.register_buffer(f'vars_propagator_{self._escape_name(name)}', propagator) running_var = torch.ones((self._nfields[r.name], len(r.irreps)), dtype=torch.float) running_mean = torch.zeros((self._nfields[r.name], len(trivials)), dtype=torch.float) self.register_buffer(f'{self._escape_name(name)}_running_var', running_var) self.register_buffer(f'{self._escape_name(name)}_running_mean', running_mean) if self.affine: weight = Parameter(torch.ones((self._nfields[r.name], len(r.irreps))), requires_grad=True) bias = Parameter(torch.zeros((self._nfields[r.name], len(trivials))), requires_grad=True) self.register_parameter(f'{self._escape_name(name)}_weight', weight) self.register_parameter(f'{self._escape_name(name)}_bias', bias) self.register_buffer('num_batches_tracked', torch.tensor(0, dtype=torch.long)) self.eps = eps self.momentum = momentum def reset_running_stats(self): for name, size in self._sizes: running_var = getattr(self, f"{self._escape_name(name)}_running_var") running_mean = getattr(self, f"{self._escape_name(name)}_running_mean") running_var.fill_(1) running_mean.fill_(0) self.num_batches_tracked.zero_() def reset_parameters(self): self.reset_running_stats() if self.affine: for name, size in self._sizes: weight = getattr(self, f"{self._escape_name(name)}_weight") bias = getattr(self, f"{self._escape_name(name)}_bias") weight.data.fill_(1) bias.data.fill_(0) def _get_running_stats(self, name: str): vars = getattr(self, f"{self._escape_name(name)}_running_var") means = getattr(self, f"{self._escape_name(name)}_running_mean") return means, vars
[docs] def forward(self, input: GeometricTensor) -> GeometricTensor: r""" Apply norm non-linearities to the input feature map Args: input (GeometricTensor): the input feature map Returns: the resulting feature map """ assert input.type == self.in_type exponential_average_factor = 0.0 if self.training: self.num_batches_tracked += 1 if self.momentum is None: # use cumulative moving average exponential_average_factor = 1.0 / self.num_batches_tracked.item() else: # use exponential moving average exponential_average_factor = self.momentum coords = input.coords input = input.tensor shape = input.shape[2:] b, c = input.shape[:2] output = torch.empty_like(input) # iterate through all field types for name, size in self._sizes: indices = getattr(self, f"{self._escape_name(name)}_indices") if self._contiguous[name]: slice = input[:, indices[0]:indices[1], ...] else: slice = input[:, indices, ...] slice = slice.view(b, -1, size, *shape) if hasattr(self, f"{self._escape_name(name)}_change_of_basis_inv"): cob_inv = getattr(self, f"{self._escape_name(name)}_change_of_basis_inv") slice = torch.einsum("ds,bcsxy->bcdxy", (cob_inv, slice)) if not self.track_running_stats: means, vars = self._compute_statistics(slice, name) elif self.training: # compute the mean and variance of the fields means, vars = self._compute_statistics(slice, name) running_mean, running_var = self._get_running_stats(name) running_var *= 1 - exponential_average_factor running_var += exponential_average_factor * vars running_mean *= 1 - exponential_average_factor running_mean += exponential_average_factor * means assert not torch.isnan(running_mean).any() assert not torch.isnan(running_var).any() assert torch.allclose(running_mean, getattr(self, f"{self._escape_name(name)}_running_mean")) assert torch.allclose(running_var, getattr(self, f"{self._escape_name(name)}_running_var")) else: means, vars = self._get_running_stats(name) if self.affine: weight = getattr(self, f"{self._escape_name(name)}_weight") else: weight = 1. # helps in case mixed precision is used vars[vars < 0.] = 0. # compute the scalar multipliers needed scales = weight / (vars + self.eps).sqrt() # compute the point shifts # shifts = bias - self._scale(means, scales, name=name) centered = self._shift(slice, -1*means, name=name, out=None) normalized = self._scale(centered, scales, name=name, out=None) if self.affine: bias = getattr(self, f"{self._escape_name(name)}_bias") normalized = self._shift(normalized, bias, name=name, out=None) if hasattr(self, f"{self._escape_name(name)}_change_of_basis"): cob = getattr(self, f"{self._escape_name(name)}_change_of_basis") normalized = torch.einsum("ds,bcsxy->bcdxy", (cob, normalized)) if not self._contiguous[name]: output[:, indices, ...] = normalized.view(b, -1, *shape) else: output[:, indices[0]:indices[1], ...] = normalized.view(b, -1, *shape) # if self._contiguous[name]: # slice2 = output[:, indices[0]:indices[1], ...] # else: # slice2 = output[:, indices, ...] # assert torch.allclose(slice2.view(b, -1, size, h, w), slice), name # wrap the result in a GeometricTensor return GeometricTensor(output, self.out_type, coords)
def evaluate_output_shape(self, input_shape: Tuple[int, ...]) -> Tuple[int, ...]: assert len(input_shape) >= 2 assert input_shape[1] == self.in_type.size b, c = input_shape[:2] spatial_shape = input_shape[2:] return (b, self.out_type.size, *spatial_shape) def check_equivariance(self, atol: float = 1e-6, rtol: float = 1e-5) -> List[Tuple[Any, float]]: # return super(NormBatchNorm, self).check_equivariance(atol=atol, rtol=rtol) pass def _compute_statistics(self, t: torch.Tensor, name: str): trivial_idxs = self._trivial_idxs[name] vars_aggregator = getattr(self, f"vars_aggregator_{self._escape_name(name)}") b, c, s = t.shape[:3] shape = t.shape[3:] l = trivial_idxs.numel() # number of samples in the tensor used to estimate the statistics M = (np.prod(shape) if shape else 1) N = b * M # compute the mean of the trivial fields trivial_means = t[:, :, trivial_idxs, ...].view(b, c, l, M).mean(dim=(0, 3), keepdim=False).detach() # compute the mean of squares of all channels vars = (t ** 2).view(b, c, s, M).mean(dim=(0, 3), keepdim=False).detach() # For the non-trivial fields the mean of the fields is 0, so we can compute the variance as the mean of the # norms squared. # For trivial channels, we need to subtract the squared mean vars[:, trivial_idxs] -= trivial_means**2 # helps in case mixed precision is used vars[vars < 0.] = 0. # aggregate the squared means of the channels which belong to the same irrep vars = torch.einsum("io,ci->co", (vars_aggregator, vars)) # helps in case mixed precision is used vars[vars < 0.] = 0. # Correct the estimation of the variance with Bessel's correction correction = N/(N-1) if N > 1 else 1. vars *= correction return trivial_means, vars def _scale(self, t: torch.Tensor, scales: torch.Tensor, name: str, out: torch.Tensor = None): if out is None: out = torch.empty_like(t) vars_aggregator = getattr(self, f"vars_propagator_{self._escape_name(name)}") ndims = len(t.shape[3:]) scale_shape = (1, scales.shape[0], vars_aggregator.shape[0]) + (1,)*ndims # scale all fields out[...] = t * torch.einsum("oi,ci->co", (vars_aggregator, scales)).reshape(scale_shape) return out def _shift(self, t: torch.Tensor, trivial_bias: torch.Tensor, name: str, out: torch.Tensor = None): if out is None: out = t.clone() else: out[:] = t trivial_idxs = self._trivial_idxs[name] bias_shape = (1,) + trivial_bias.shape + (1,)*(len(t.shape) - 3) # add bias to the trivial fields out[:, :, trivial_idxs, ...] += trivial_bias.view(bias_shape) return out def _escape_name(self, name: str): return name.replace('.', '^') def __repr__(self): extra_lines = [] extra_repr = self.extra_repr() if extra_repr: extra_lines = extra_repr.split('\n') main_str = self._get_name() + '(' if len(extra_lines) == 1: main_str += extra_lines[0] else: main_str += '\n ' + '\n '.join(extra_lines) + '\n' main_str += ')' return main_str def extra_repr(self): return '{in_type}, eps={eps}, momentum={momentum}, affine={affine}, track_running_stats={track_running_stats}' \ .format(**self.__dict__)
[docs] def export(self): r""" Export this module to a normal PyTorch :class:`torch.nn.BatchNormNd` module and set to "eval" mode. """ if not self.track_running_stats: raise ValueError(''' Equivariant Batch Normalization can not be converted into conventional batch normalization when "track_running_stats" is False because the statistics contained in a single batch are generally not symmetric ''') self.eval() batchnorm = torch.nn.BatchNorm3d( self.in_type.size, self.eps, self.momentum, affine=self.affine, track_running_stats=self.track_running_stats ) batchnorm.num_batches_tracked.data = self.num_batches_tracked.data for name, size in self._sizes: contiguous = self._contiguous[name] if not contiguous: raise NotImplementedError( '''Non-contiguous indices not supported yet when converting inner-batch normalization into conventional BatchNorm2d''' ) n = self._nfields[name] start, end = getattr(self, f"{self._escape_name(name)}_indices") running_mean, running_var = self._get_running_stats(name) batchnorm.running_mean.data[start:end] = self._shift(torch.zeros( 1, n, size ), running_mean, name=name, out=None).view(-1) batchnorm.running_var.data[start:end] = self._scale(torch.ones( 1, n, size ), running_var, name=name, out=None).view(-1) if self.affine: weight = getattr(self, f'{self._escape_name(name)}_weight') batchnorm.weight.data[start:end] = self._scale(torch.ones( 1, n, size ), weight, name=name, out=None).view(-1) bias = getattr(self, f"{self._escape_name(name)}_bias") batchnorm.bias.data[start:end] = self._shift(torch.zeros( 1, n, size ), bias, name=name, out=None).view(-1) if hasattr(self, f"{self._escape_name(name)}_change_of_basis"): cob = getattr(self, f"{self._escape_name(name)}_change_of_basis") batchnorm.running_var.data[start:end] = torch.einsum( "ds,cs->cd", cob, batchnorm.running_var.data[start:end].view(n, size) ).view(-1) batchnorm.eval() return batchnorm